Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
2.
J Dairy Sci ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38246557

ABSTRACT

This study aimed to investigate the metabolic changes in the livers of dairy cows from 1 wk before dry-off to 1 wk after calving. Twelve high-yielding Holstein cows were included in a longitudinal study and housed in a tie-stall barn. The cows were dried off at 6 wk before the expected calving date (dry period length = 42 d). During the entire lactation, the cows were milked twice daily at 0600 and 1700 h. Liver biopsies were taken from each cow at 4 different times: wk -7 (before drying off), -5 (after drying off), -1 and +1 relative to calving. A targeted metabolomics approach was performed by liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP® Quant 500 kit. A total of 185 metabolites in the liver were used for the final data analysis. Principal component analysis (PCA) revealed a clear separation by days of sampling, indicating a notable shift in metabolic phenotype from late lactation to dry period and further changes after calving. Changes were observed in several classes of compounds, including amino acids and biogenic amines. In particular, the changes in acylcarnitines (AcylCN), phosphatidylcholines (PC), sphingomyelins (SM) and bile acids (BA) indicated extensive remodeling of the hepatic lipidome. The changes in AcylCN concentrations in early lactation suggest incomplete fatty acid oxidation in the liver, possibly indicating mitochondrial dysfunction or enzymatic imbalance. In addition, the changes in PC and SM species in early lactation indicate altered cell membrane composition, which may affect cell signaling and functionality. In addition, changes in BA concentrations and profiles indicate dynamic adaptations in BA synthesis, lipid digestion and absorption during the observation period. In particular, PCA analysis showed an overlapping distribution of liver metabolites in primiparous and multiparous cows, indicating no significant difference between these groups. In addition, Volcano plots showed similar liver metabolism between primiparous and multiparous cows, with no significant fold changes (>1.5) in any metabolite at significant P-values (false discovery rate <0.05). These results provide valuable insight into the physiological ranges of liver metabolites during dry period and calving in healthy dairy cows and should contribute to the design and interpretation of future metabolite-based studies of the transition dairy cow.

3.
J Dairy Sci ; 107(5): 2797-2817, 2024 May.
Article in English | MEDLINE | ID: mdl-37944801

ABSTRACT

Fat composition in milk replacers (MR) for calves differs from bovine milk fat in multiple ways. The aim of the study was to investigate the impact of different approaches of formulating fat in MR on growth, ad libitum intakes of MR and solid feeds, as well as blood metabolites in dairy calves. Upon 24 to 96 h after birth, 63 calves were acquired from dairy farms and incorporated into the study. Calves were blocked based on arrival day and randomly assigned within each block to one of 3 treatments differing in MR fat composition (n = 21 per group): VG was based on vegetable fats including 80% rapeseed and 20% coconut fats; AN was formulated with animal fats including 65% lard and 35% dairy cream; and MX with a mixture of 80% lard and 20% coconut fats. All 3 MR contained 30% fat, 24% crude protein, and 36% lactose and were formulated to have a fatty acid profile resembling that of milk fat. From arrival onward (3.1 ± 0.84 d of age; means ± standard deviation), calves were group housed and were offered an ad libitum supply of MR at 135 g/L (13.5% solids). Weaning was gradual and induced between wk 7 and 10, after which calves were fed only solid feeds. Starter feed, chopped straw, and water were offered ad libitum throughout the study. Calves were weighed, and blood was collected weekly until d 84 after arrival. Preweaning average daily gain was greater in calves fed AN (915 g/d) than other treatments (783 g/d), whereas no differences were detected in the weaning and postweaning phases. Preweaning MR intake was greater in calves fed AN than MX from wk 2 to 6 and was also higher in calves fed AN than VG in wk 5 and 6. Consistently, the number of rewarded visits during the ad libitum phase was greater in calves fed AN than MX, whereas VG showed no differences. This led to a higher preweaning total metabolizable energy intake in calves fed AN than in calves fed VG and MX. Serum cholesterol was higher, and serum albumin was lower in calves fed VG than other treatments. The proportion of high-density lipoprotein cholesterol in total plasma cholesterol was lower and that of low-density lipoprotein (LDL) cholesterol was higher in calves fed VG compared with other treatments. Overall, the fatty acid profile of plasma largely mirrored the MR fat composition during the preweaning period. Feeding AN enhanced MR intake and improved preweaning growth compared with other treatments. Feeding VG resulted in a marked increase in plasma cholesterol, particularly in the form of LDL cholesterol, which could be linked to an excessive intake of polyunsaturated fatty acids. These findings underscore the importance of formulating the fat content of MR to be similar to bovine milk fat.

4.
J Dairy Sci ; 107(3): 1751-1765, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37806621

ABSTRACT

In a previously established animal model, 38 multiparous Holstein cows were assigned to 2 groups fed different diets to achieve either a normal (NBCS) or high (HBCS) body condition score (BCS) and backfat thickness (BFT) until dry-off at -49 d before calving (NBCS: BCS <3.5 [3.02 ± 0.24) and BFT <1.2 cm [0.92 ± 0.21]; HBCS: BCS >3.75 [3.82 ± 0.33] and BFT >1.4 cm [2.36 ± 0.35], mean ± SD). The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg; mean ± SD). The cows were then fed the same diet during the dry period and subsequent lactation, maintaining the differences in BFT and BCS throughout the study. Using the serum metabolomics data, we created a classification model that identified different metabotypes. Machine learning classifiers revealed a distinct cluster labeled HBCS-PN (HBCS predicted normal BCS) among over-conditioned cows. These cows showed higher feed intake and better energy balance than the HBCS-PH (high BCS predicted high BCS) group, while milk yield was similar. The aim of this study was to investigate the changes in the hepatic transcriptome of cows differing in serum-metabotype postpartum. We performed hepatic transcriptome analysis in cows from 3 metabolic clusters: HBCS-PH (n = 8), HBCS-PN (n = 6), and normal BCS predicted normal BCS (NBCS-PN, n = 8) on d 21 (±2) postpartum. Liver tissue from cows expressed a total of 13,118 genes aligned with the bovine genome. A total of 48 differentially expressed genes (DEG; false discovery rate ≤0.1 and fold-change >1.5) were found between NBCS-PN and HBCS-PH cows, whereas 24 DEG (14 downregulated and 10 upregulated) were found between HBCS-PN and HBCS-PH cows. The downregulated DEG (n = 31) in NBCS-PN cows compared with HBCS-PH cows are involved in biosynthetic processes such as lipid, lipoprotein, and cholesterol synthesis (e.g., APOA1, MKX, RPL3L, CANT1, CHPF, FUT1, ZNF696), cell organization, biogenesis, and localization (e.g., SLC12A8, APOA1, BRME1, RPL3L, STAG3, FBXW5, TMEM120A, SLC16A5, FGF21), catabolic processes (e.g., BREH1, MIOX, APOBEC2, FBXW5, NUDT16), and response to external stimuli (e.g., APOA1, FGF21, TMEM120A, FNDC4), whereas upregulated DEG (n = 17) are related to signal transduction and cell motility (e.g., RASSF2, ASPN, SGK1, KIF7, ZEB2, MAOA, ACKR4, TCAF1), suggesting altered metabolic adaptations during lactation. Our results showed 24 DEG between HBCS-PN and HBCS-PH in the liver. The expression of SLC12A8, SLC16A5, FBXW5, OSGIN1, LAMA3, KDELR3, OR4X17, and INHBE, which are responsible for regulating cellular processes was downregulated in HBCS-PN cows compared with HBCS-PH cows. In particular, the downregulation of SLC12A8 and SLC16A5 expression in HBCS-PN cows indicates lower metabolic load and reduced need for NAD+ biosynthesis to support mitochondrial respiratory processes. The upregulation of MAOA, ACKR4, KIF27, SFRP1, and CAV2 in the liver of HBCS-PN cows may indicate adaptive mechanisms to maintain normal liver function in response to increased metabolic demands from over-conditioning. These molecular differences underscore the existence of distinct metabolic types in cows and provide evidence for the role of the liver in shaping different metabolic patterns.


Subject(s)
Postpartum Period , Transcriptome , Female , Cattle , Animals , Postpartum Period/metabolism , Lactation/physiology , Milk/chemistry , Liver/metabolism
5.
J Dairy Sci ; 107(2): 1263-1285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37777004

ABSTRACT

The objective of this study was to characterize changes in the serum metabolome and various indicators of oxidative balance in dairy cows starting 2 wk before dry-off and continuing until wk 16 of lactation. Twelve Holstein dairy cows (body weight 745 ± 71 kg, body condition score 3.43 ± 0.66; mean ± SD) were housed in a tiestall barn from 10 wk before to 16 wk after parturition. Cows were dried off 6 wk before the expected calving date (mean dry period length = 42 d). From 8 wk before calving to 16 wk after calving, blood samples were taken weekly to study redox metabolism by determining antioxidant capacity, measured as the ferric-reducing ability of plasma, reactive oxidative metabolites, oxidative stress index, oxidative damage of lipids, measured as thiobarbituric acid reactive substances, and glutathione peroxidase activity. According to these results, dairy cows had the lowest serum antioxidant capacity and greater levels of oxidative stress during the dry-off period and the early postpartum period. For metabolomics, a subset of serum samples including wk -7 (before dry-off), -5 (after dry-off), -1, 1, 5, 10, and 15 relative to calving were used. A targeted metabolomics approach was performed using liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 240 metabolites in serum were used in the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a remarkable shift in metabolic phenotype between the dry period and late and early lactation. Changes in many non-lipid metabolites associated with one-carbon metabolism, the tricarboxylic acid cycle, the urea cycle, and AA catabolism were observed in the study, with changes in AA serum concentrations likely related to factors such as energy and nitrogen balance, digestive efficiency, and changing diets. The study confirmed an extensive remodeling of the serum lipidome in peripartum dairy cows, highlighting the importance of changes in acylcarnitine (acylCN), phosphatidylcholines (PC), and triacylglycerols (TG), as they play a crucial role in lipid metabolism. Results showed that short-chain acylCN increased after dry-off and decreased thereafter, whereas lipid-derived acylCN increased around parturition, suggesting that more fatty acids could enter mitochondria. Phospholipids and sphingolipids in serum showed changes during lactation. In particular, concentrations of sphingomyelins, PC, and lysoPC decreased around calving but increased in mid- and late lactation. In contrast, concentrations of TG remained consistently low after parturition. The serum concentrations of bile acids fluctuated during the dry period and lactation, with glycocholic acid, cholic acid, glycodeoxycholic acid, and taurocholic acid showing the greatest concentrations. These changes are likely due to the interplay of diet, liver function, and the ability of the gut microbiota to convert primary to secondary bile acids. Overall, these descriptive results may aid in hypothesis generation and in the design and interpretation of future metabolite-based studies in dairy cows. Furthermore, they contribute to our understanding of the physiological ranges in serum metabolites relative to the lactation cycle of the dairy cow.


Subject(s)
Antioxidants , Milk , Female , Cattle , Animals , Milk/chemistry , Antioxidants/metabolism , Serum , Lactation/physiology , Postpartum Period/metabolism , Diet/veterinary , Metabolome , Energy Metabolism , Bile Acids and Salts
6.
J Dairy Sci ; 107(1): 607-624, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37709041

ABSTRACT

To investigate the effects of supplemental monensin administration on the metabolic responses of dairy cows, a systematic review and dose-response meta-analysis were conducted. Initially, 604 studies were identified through comprehensive database searches, including Google Scholar, Scopus, Science Direct, and PubMed, using key words related to dairy cows, monensin, and metabolic outcomes. After a 2-stage screening process, 51 articles with a total of 60 experiments were selected for meta-analysis based on criteria such as study implementation date between 2001 and 2022, presence of a control group that did not receive monensin supplementation, reporting of at least 1 outcome variable, and presentation of means and corresponding errors. The meta-analysis used the 1-stage random-effects method, and sensitivity analyses were performed to assess the robustness of the results. The results showed that the administration of monensin at a dosage of 19 to 26 mg/kg was inversely related to methane emissions and that the administration of monensin at a dosage of 18 to 50 mg/kg resulted in a significant decrease in dry matter intake. Administration of monensin at doses of 13 to 28 and 15 to 24 mg/kg also resulted in a significant decrease in ruminal acetate proportion and an increase in propionate proportion, respectively, with no effects on ruminal butyrate, NH3, or pH levels. We found no effects on blood parameters or nitrogen retention, but a significant negative correlation was observed between monensin supplementation and fecal nitrogen excretion. Based on the analysis of all variables evaluated, the optimal dose range of monensin was estimated to be 19 to 24 mg/kg.


Subject(s)
Milk , Monensin , Female , Cattle , Animals , Milk/chemistry , Fermentation , Methane/metabolism , Rumen/metabolism , Nitrogen/metabolism , Dietary Supplements/analysis , Diet/veterinary , Lactation/physiology
7.
J Dairy Sci ; 107(1): 202-219, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37678765

ABSTRACT

Quantifying the water and mineral losses in feces is essential to determine the optimal composition of oral rehydration solutions (ORS) for diarrheic animals. In a randomized complete block design, this study evaluated water, mineral, and blood acid-base balance of calves with naturally occurring diarrhea receiving ORS or a placebo. On d 0, 45 calves (age: 18 ± 3.2 d; mean ± SD) were selected based on the presence of visual signs of diarrhea, such as dirty tail or wet feces, along with clinical symptoms evaluated by measuring the skin turgor and the degree of enophthalmos. On d 1, calves were divided into blocks of 3 animals based on blood base excess (BE) measured at 0900 h, and within each block, calves were randomly assigned to 1 of 3 treatments (15 calves per treatment) including (1) a hypertonic ORS (HYPER; Na+ = 110 mmol/L; 370 mOsm/kg; strong ion difference [SID] = 60 mEq/L), (2) a hypotonic ORS with low Na+ (HYPO; Na+ = 77 mmol/L; 278 mOsm/kg; SID = 71 mEq/L), and (3) a placebo consisting of lukewarm water with 5 g/L of whey powder (CON). Milk replacer (MR) was fed through teat buckets twice daily at 0630 h and 1700 h in 2 equally sized meals of 2.5 L from d 1 to 3 and of 3.0 L on d 4 and 5. Treatments consisting of 2.0 L lukewarm solutions were administered between milk meals from d 1 to 3 at 1200 h and 2030 h through teat buckets. Refusals of MR and treatments were recorded daily, and blood samples were collected from the jugular vein once daily at arrival in the afternoon of d 0 and at 0900 h from d 1 to 5 after arrival. Urine and feces were collected quantitatively over a 48-h period from 1200 h on d 1 to 1200 h on d 3, and a representative sample of each 24-h period was stored. In addition, the volume of extracellular fluid was evaluated on d 2 by postprandial sampling over a 4-h period relative to the injection of sodium thiosulfate at 1300 h. Total daily fluid intake (MR, treatment, and water) from d 1 to 3 was greater in HYPER (LSM ± SEM; 8.9 ± 0.36 L/d) and HYPO (7.8 ± 0.34 L/d) than in CON (6.6 ± 0.34 L/d). This resulted in a greater water balance (water intake - fluid output in urine and feces) in calves receiving ORS (59.6 ± 6.28 g/kg BW per 24 h vs. 39.6 ± 6.08 g/kg BW per 24 h). Fecal Na+ losses were greater in HYPER than in the other treatments (81 ± 12.0 mg/kg BW per 24 h vs. 24 ± 11.8 mg/kg BW per 24 h). Blood pH was higher in HYPO (7.41 ± 0.016) than CON (7.35 ± 0.016) over the 5 monitoring days, whereas HYPER (7.37 ± 0.017) did not differ with other treatments. In this experimental model, diarrheic calves were likely unable to absorb the high Na+ load from HYPER, resulting in greater Na+ losses in feces, which might have impaired the alkalinizing capacity of HYPER. In contrast, HYPO significantly sustained blood acid-base balance compared with CON, whereas HYPER did not. This suggests that low tonicity ORS with a high SID are more suitable for diarrheic calves.


Subject(s)
Acid-Base Equilibrium , Mineral Waters , Animals , Cattle , Rehydration Solutions/therapeutic use , Diarrhea/veterinary , Diarrhea/drug therapy , Sodium , Milk , Minerals , Mineral Waters/therapeutic use , Animal Feed , Diet/veterinary , Body Weight , Weaning
8.
J Dairy Sci ; 107(1): 184-201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37641288

ABSTRACT

Significant differences exist in the composition of current milk replacers (MR) and bovine whole milk. This study investigated how the macronutrient profile of 3 different MR formulations containing varying amounts of fat, lactose, and protein, and a whole milk powder (WP), affect postprandial metabolism and gut permeability in male Holstein calves. Sixty-four calves (45.4 ± 4.19 kg [mean ± SD] and 1.8 ± 0.62 d of age) were blocked in order of arrival to the facility and within each block, calves were randomly assigned to 1 of 4 treatments. Treatments included a high-fat MR (HF: 25.0% dry matter [DM] fat, 22.5% protein, 38.6% lactose; n = 14), a high-lactose MR (HL: 44.6% lactose, 22.5% protein, 18.0% fat; n = 17), a high-protein MR (HP: 26.0% protein, 18.0% fat, 41.5% lactose; n = 17), and WP (26.0% fat, 24.5% protein, 38.0% lactose; n = 16). Calves were fed 3.0 L (135 g/L) 3 times daily at 0600, 1200, and 1800 h with a teat bucket. Milk intake was recorded daily for the first 28 d after arrival, and blood sampling and body weight measurements were performed at arrival and on d 7, 14, 21, and 27. Gut permeability was estimated from fractional urinary excretion of indigestible markers (Cr-EDTA, lactulose, and d-mannitol) administered as a single dose on d 21 instead of the morning milk meal. Digestibility was determined simultaneously from a total collection of feces over 24 h. Postprandial dynamics were measured on d 28 by sequential blood sampling over 7.5 h. Dry matter intake of MR over 28 d was slightly greater in calves fed HL and HP than in WP. Recovery of Cr-EDTA and d-mannitol over a 24-h urine collection was greater in calves fed WP and HP than HL calves. Apparent total-tract digestibility of crude ash, protein, and fat did not differ among treatments; however, DM digestibility was lower in calves fed WP than in other treatment groups. In addition, abomasal emptying, as indicated by the area under the curve (AUC) for acetaminophen, was slower in calves fed WP than in calves fed HF and HL. The AUC for postprandial plasma glucose was lower in calves fed HL than WP and HF and lower in calves fed HP than WP. The AUC for postprandial serum insulin was greater in calves fed HP than WP and HF, whereas calves fed HL did not differ from the other treatments. Postprandial triglycerides were greater in calves fed WP, and postprandial adiponectin was higher in calves fed HL than other treatments. The high content of lactose and protein in MR had a major effect on postprandial metabolism. This raises the possibility of optimizing MR formulations to maintain metabolic homeostasis and influence development.


Subject(s)
Milk Substitutes , Milk , Animals , Cattle , Male , Milk/metabolism , Powders , Diet/veterinary , Lactose/metabolism , Edetic Acid , Nutrients , Permeability , Animal Feed/analysis , Mannitol , Body Weight , Weaning
9.
J Dairy Sci ; 107(5): 2818-2831, 2024 May.
Article in English | MEDLINE | ID: mdl-37923211

ABSTRACT

Milk replacers (MR) for calves contain alternative fat sources as substitute for milk fat. This substitution leads to differences in fat properties, such as the fatty acid profile and the triglyceride structure. This study evaluated how fat composition in MR affects gastrointestinal health, blood redox parameters, and postprandial metabolism in calves fed twice daily. Forty-five individually housed male Holstein-Friesian calves (2.3 ± 0.85 d of age) were assigned to 1 of 15 blocks based on the age and the day of arrival. Within each block, calves were randomly assigned to 1 of 3 experimental diets and received their respective diet from arrival until 35 d after arrival. The 3 experimental diets (n = 15 per treatment group) consisted of an MR with a blend of vegetable fats containing rapeseed and coconut (VG), an MR with only animal fats from lard and dairy cream (AN), and an MR containing a mixture of animal and vegetable fats including lard and coconut (MX). The fatty acid profile of each MR was formulated to resemble that of bovine milk fat while using only 2 fat sources. All MR were isoenergetic, with 30% fat (% DM), 24% crude protein, and 36% lactose. Chopped straw and water were available ad libitum from arrival onward but no starter feed was provided. Daily milk allowances were 6.0 L from d 1 to 5, 7.0 L from d 6 to 9, and 8.0 L from d 10 to 35, divided into 2 equal meals and prepared at 135 g/L (13.5% solids). Fecal appearance was scored daily; calves were weighed and blood was drawn on arrival and weekly thereafter. Urine and feces were collected over a 24-h period at wk 3 and 5 to determine apparent total-tract digestibility and assess gastrointestinal permeability using indigestible markers. Postprandial metabolism was evaluated at wk 4 by sequential blood sampling over 7.5 h, and the abomasal emptying rate was determined by acetaminophen appearance in blood. Fat composition in MR did not affect growth, MR intake, gastrointestinal permeability, nor nutrient digestibility. The percentage of calves with abnormal fecal scores was lower at wk 2 after arrival in calves fed VG than MX, whereas AN did not differ from the other treatments. Calves fed AN and MX had higher thiobarbituric acid reactive substances measured in serum than VG, whereas plasma ferric-reducing ability was greater in calves fed MX than VG. Postprandial acetaminophen concentrations did not differ across treatment groups, but the area under the curve was smaller in calves fed VG than in the other 2 treatments, which is indicative of a slower abomasal emptying. Postprandial serum triglyceride concentration was greater in calves fed AN than VG, whereas MX did not differ from the other treatments. Based on these outcomes, all 3 fat blends can be considered suitable for inclusion in MR for calves.

10.
JDS Commun ; 4(6): 507-512, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38045901

ABSTRACT

Colostrum contains nutrients, immunoglobulins, and various bioactive compounds such as microRNA (miRNA). Less is known about the temporal changes in miRNA profiles in ruminant milk samples during the first week postpartum. In this study, we characterized and compared the profiles of miRNA in the small extracellular vesicles (sEV) isolated from colostrum (CM, collected immediately after parturition, n = 8) and transition milk (TM, collected 7 d postpartum, n = 8) from eight 1-yr-old Guanzhong dairy goats with a milk yield of approximately 500 kg/year. A total of 192 unique sEV-associated miRNA (transcripts per million >1 at least 4 samples in either CM or TM) were identified in all samples. There were 29 miRNA uniquely identified in the TM samples while no miRNA was uniquely identified in the CM samples. The abundance of the top 10 miRNA accounted for 82.4% ± 4.0% (± SD) of the total abundance, with let-7 families (e.g., let-7a/b/c-5p) being predominant in all samples. The top 10 miRNA were predicted to target 1,008 unique genes that may regulate pathways such as focal adhesion, TGF-ß signaling, and axon guidance. The expression patterns of EV miRNA were similar between the 2 sample groups, although the abundance of let-7c-5p and miR-30a-3p was higher, whereas that of let-7i-5p and miR-103-3p was lower in CM than in TM. In conclusion, the core miRNAome identified in the samples from CM and TM may play an important role in cell proliferation, bone homeostasis, and neuronal network formation in newborn goat kids. The lack of differential miRNA expression between the CM and TM samples may be due to a relatively short sampling interval in which diet composition, intake and health status of ewes, and environment were relatively stable.

11.
Sci Rep ; 13(1): 17914, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864062

ABSTRACT

The objective of this study was to investigate the effects of corn processing index (CPI)-particularly at 70% and 85%-in starter feed in combination with the provision of forage, either alfalfa hay (AH) or wheat straw (WS), on feed intake, growth performance, rumen pH, and blood metabolites of dairy calves. Forty-eight male Holstein calves (43.0 ± 1.5 kg body weight) were randomly assigned (n = 12 calves per treatment) to one of four dietary treatments: (1) a textured starter diet containing 70% CPI and AH (70CPIAH), (2) a textured starter feed containing 70% CPI combined with WS (70CPIWS), (3) a textured starter feed containing 85% CPI and AH (85CPIAH), (4) a textured starter feed containing 85% CPI combined with WS (85CPIWS). Intake of starter feed (TMR) and milk was individually monitored and recorded daily, while body weight was measured weekly. On days 30 and 65, blood samples were collected from all calves 3 h after morning feeding. No interaction was detected between the CPI of starter feed diets and forage provision for starter intake, dry matter intake (DMI), metabolizable energy intake (MEI), feed efficiency (FE), average daily gain (ADG), and body weight (BW). The preweaning and overall DMI, preweaning, postweaning and overall FE and ADG, preweaning and overall starter intake, preweaning and overall ME intake, and postweaning and overall BW were greater for calves fed 85CPI than those fed 70CPI starter diets. Postweaning and overall ADG and postweaning FE were greater in calves fed WS than those fed AH. Body length and hip width were greater for calves offered 85CPI than in fed 70CPI. Wheat straw supplementation increased rumen pH at day 65 in calves fed 70CPI, but not in those fed 85CPI. No interaction was found between the CPI in the starter feed diet and the forage source for starter intake and DMI, MEI, FE, and BW. The results showed that including corn with 85% processing index in dairy calf starters improved their growth performance.


Subject(s)
Animal Feed , Zea mays , Animals , Cattle , Male , Animal Feed/analysis , Body Weight , Diet/veterinary , Fermentation , Rumen/metabolism , Triticum , Weaning
12.
Sci Rep ; 13(1): 18627, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903888

ABSTRACT

This study was conducted to investigate the effects of supplementation of different fat sources in calf starters on growth performance, health, blood fatty acid profiles, and inflammatory markers during the cold season in dairy calves. A total of 48 Holstein calves (24 males and 24 females) were randomly assigned to 1 of 4 starter diets throughout the experiment (d 3 to 65): (1) no supplemented fat (CON), (2) 3% calcium-salts of soybean oil (Ca-SBO), (3) 3% calcium-salts of fish oil (Ca-FO), and (4) 3% mixture of Ca-SBO and Ca-FO (1.5% each, DM basis; MIX). Calves were given free access to starter feed and water and were raised individually in pens from 3 to 65 d of age. Calves fed Ca-SBO consumed a greater proportion of n-6 FA, while calves fed Ca-FO consumed a greater level of n-3 FA compared to the other dietary treatments. Fat supplementation increased the intake of linoleic acid, the major n-6 FA, with the greater intake observed in the Ca-SBO group compared to the other dietary treatments. Calves fed the Ca-FO and MIX diets consumed more long-chain n-3 FA than the other diets. In addition, calves fed Ca-SBO and Ca-FO diets consumed more starter feed and total dry matter than calves fed MIX and CON throughout the experiment (d 3 to 65). Calves fed Ca-FO had higher average daily gain throughout the trial (d 3 to 65) than the other treatment groups. Of all treatment groups, calves fed Ca-FO achieved the highest final body weight and showed the greatest feed efficiency. Random forest analysis revealed that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid were the serum levels of FA most affected by the diets. The principal component analysis of blood FA profile, blood parameters, and inflammatory markers showed distinct differences between dietary treatments. Calves fed Ca-SBO had higher plasma concentrations of linoleic acid, while calves fed Ca-FO had higher plasma concentrations of long-chain n-3 polyunsaturated fatty acids (PUFA), such as EPA, docosapentaenoic acid (DPA), and DHA than the other treatment groups. Plasma inflammatory markers were lower in calves fed Ca-FO and higher in calves fed CON than in the other treatment groups. The Ca-FO group had lower levels of inflammatory markers, including serum amyloid A, tumor necrosis factor-alpha, Interferon-γ, haptoglobin, and interleukin-6 compared to the other experimental treatments. Also, the blood malondialdehyde levels, an indicator of oxidative stress, were lower in calves fed Ca-FO compared with calves fed the other treatment diets. In conclusion, the performance of preweaned dairy calves can be improved by adding fat to their starter feed under cold conditions. Overall, the type of fat in milk may affect growth and inflammation of dairy calves before weaning under cold conditions, with n-3 FA (Ca-FO) promoting growth and reducing inflammation more effectively than n-6 FA (Ca-SBO).


Subject(s)
Calcium , Fatty Acids , Animals , Cattle , Female , Male , Animal Feed/analysis , Body Weight , Diet/veterinary , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids/pharmacology , Inflammation , Linoleic Acids , Salts , Seasons , Soybean Oil/analysis , Weaning
13.
J Dairy Sci ; 106(12): 9822-9842, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641324

ABSTRACT

The current study was conducted to examine the effect of l-carnitine (LC) supplementation on telomere length and mitochondrial DNA copy number (mtDNAcn) per cell in mid-lactation cows challenged by lipopolysaccharide (LPS) in blood and liver. The mRNA abundance of 31 genes related to inflammation, oxidative stress, and the corresponding stress response mechanisms, the mitochondrial quality control and the protein import system, as well as the phosphatidylinositol 3-kinase/protein kinase B pathway, were assessed using microfluidics integrated fluidic circuit chips (96.96 dynamic arrays). In addition to comparing the responses in cows with or without LC, our objectives were to characterize the oxidative and inflammatory status by assessing the circulating concentration of lactoferrin (Lf), haptoglobin (Hp), fibrinogen, derivates of reactive oxygen metabolites (dROM), and arylesterase activity (AEA), and to extend the measurement of Lf and Hp to milk. Pluriparous Holstein cows were assigned to either a control group (CON, n = 26) or an LC-supplemented group (CAR; 25 g LC/cow per day; d 42 ante partum to d 126 postpartum (PP), n = 27). On d 111 PP, each cow was injected intravenously with LPS (Escherichia coli O111:B4, 0.5 µg/kg). The mRNA abundance was examined in liver biopsies of d -11 and +1 relative to LPS administration. Plasma and milk samples were frequently collected before and after the challenge. After LPS administration, circulating plasma fibrinogen and serum dROM concentrations increased, whereas AEA decreased. Moreover, serum P4 initially increased by 3 h after LPS administration and declined thereafter irrespective of grouping. The Lf concentrations increased in both groups after LPS administration, with the CAR group showing greater concentrations in serum and milk than the CON group. After LPS administration, telomere length in blood increased, whereas mtDNAcn per cell decreased; however, both remained unaffected in liver. For mitochondrial protein import genes, the hepatic mRNA abundance of the translocase of the mitochondrial inner membrane (TIM)-17B was increased in CAR cows. Moreover, TIM23 increased in both groups after LPS administration. Regarding the mRNA abundance of genes related to stress response mechanisms, 7 out of 14 genes showed group × time interactions, indicating a (local) protective effect due to the dietary LC supplementation against oxidative stress in mid-lactating dairy cows. For mtDNAcn and telomere length, the effects of the LPS-induced inflammation were more pronounced than the dietary supplementation of LC. Dietary LC supplementation affected the response to LPS primarily by altering mitochondrial dynamics. Regarding mRNA abundance of genes related to the mitochondrial protein import system, the inner mitochondrial membrane translocase (TIM complex) seemed to be more sensitive to dietary LC than the outer mitochondrial membrane translocase (TOM complex).


Subject(s)
Cattle Diseases , Lactation , Female , Cattle , Animals , Lactation/physiology , Lipopolysaccharides/adverse effects , Carnitine/metabolism , DNA, Mitochondrial , DNA Copy Number Variations , Mitochondrial Dynamics , Inflammation/veterinary , Dietary Supplements , Liver/metabolism , Milk/metabolism , Diet/veterinary , Gene Expression , Fibrinogen/adverse effects , Fibrinogen/metabolism , RNA, Messenger/metabolism , Mitochondrial Proteins/metabolism , Telomere , Cattle Diseases/metabolism
14.
Sci Rep ; 13(1): 10701, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400544

ABSTRACT

This study examined the impact of two corn processing methods (steam-flaked (SFC) vs. ground) combined with two weaning ages (50 or 75 days) on calf performance, blood metabolites, rumen fermentation, nutrient digestion, and behavior. The study involved 48 three-day-old Holstein calves, with an average body weight of 41.4 ± 2.2 kg. The experimental design was a 2 × 2 factorial arrangement, resulting in four treatment groups: SFC50 (SFC and weaning at 50 days), SFC75 (SFC and weaning at 75 days), GC50 (ground corn and weaning at 50 days), and GC75 (ground corn and weaning at 75 days). Calves were given whole milk at 4 L/ day from day 3-15 and 7 L/ day from day 16 to either 43 or 68, depending on weaning age. Weaning occurred between days 44 and 50 for early-weaned calves and between days 69 and 75 for late-weaned calves. The study lasted until calves were 93 days old. The starter ration consisted of soybean meal, corn grain, 5% chopped wheat straw and premix. Results indicated that the SFC-based starter feed improved calf performance and nutrient digestion, as evidenced by increased weight gain, dry matter, crude protein, and neutral detergent fiber digestibility. Calves fed the SFC-based starter diet had lower blood albumin and urea N concentrations, while blood total protein and globulin concentrations were higher, especially in early-weaned calves. No significant changes in rumen pH and ammonia-N concentration were observed. In addition, the SFC starter feed resulted in higher volatile fatty acids concentration and longer feeding time in weaned calves compared to ground corn. Overall, these results suggest that an SFC-based starter feed may be beneficial for both early and late weaned calves.


Subject(s)
Rumen , Zea mays , Animals , Cattle , Weaning , Rumen/metabolism , Fermentation , Animal Feed/analysis , Diet/veterinary , Body Weight , Weight Gain
15.
Vet Res Commun ; 47(3): 1115-1124, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421549

ABSTRACT

Heat stress and growing demand for dairy products in tropical regions exert metabolic pressure on dairy cows, leading to metabolic diseases and economic losses. Resveratrol (RSV) is known for its numerous beneficial health effects and can be used as a barrier against metabolic abnormalities and prevent economic losses. Several studies have investigated the effects of RSV in humans and various animal species. In this review, we attempted to investigate the effects of RSV from different aspects so that we could have a practical proposal for its utilization in dairy cows. RSV was found to have potential antioxidant, anti-inflammatory, anti-obesity, and antimicrobial effects, leading to improved reproductive performance. It is interesting that the effect of RSV on the microbial population leads to a significant decrease in methane emissions. However, high doses of RSV have been associated with possible adverse effects, underscoring the dose dependence of its efficacy. In conclusion, RSV polyphenol at optimal doses is a promising agent for the prevention and treatment of metabolic abnormalities in dairy cows, based on our literature review and study results.


Subject(s)
Lactation , Milk , Female , Humans , Cattle , Animals , Resveratrol/metabolism , Diet/veterinary , Animal Feed/analysis
16.
Animal ; 17(6): 100844, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37263134

ABSTRACT

Transition milk (TRM) is a rich source of bioactive components that promotes intestinal development and growth, and reduces the susceptibility to diarrhoea in calves. The objective of this study was to characterise the effects of replacing pasteurised waste milk (none-saleable milk containing antibiotic and/or drug residues) with pasteurised TRM for 3 wk on blood metabolites of dairy calves at 21 d of age. A total of 84 healthy newborn female Holstein calves was blocked by birth order and assigned randomly to four treatment groups with partial replacement of pasteurised waste milk by TRM (second milking after parturition) at 0 (0 L/day TRM + 6 L/day milk), 0.5 (0.5 L/day TRM + 5.5 L/day milk), 1 (1 L/day TRM + 5 L/day milk), or 2 L (2 L/day TRM + 4 L/day milk) for a 21-day period. Serum metabolome was determined by liquid chromatography with tandem mass spectrometry-based metabolomics analysis on a subset of 26 randomly selected individuals from calves fed pasteurised waste milk (CON, 6 L/d milk; n = 13) or TRM (2 L/d TRM + 4 L/d milk; n = 13) at 21 d of age. The identified metabolites (194 out of 265) were categorised according to chemical class and the number of metabolites per class in the serum, amongst which glycerophospholipids 16% (n = 43), fatty acyls 7% (n = 19), organic acids 7% (n = 18), organic heterocyclic compounds 5% (n = 13), benzenoids 5% (n = 12), sphingolipids 5% (n = 12), organic oxygen compounds 4% (n = 11), and nucleic acids 3% (n = 9), were the predominant types. Significant differences in metabolites were determined by the volcano plot. Applying the volcano plot, only two metabolites (ceramide and phosphatidylserine) were significantly different between CON and TRM. Overall, our results suggested that prolonged TRM feeding for 3 wk had little effect on the serum metabolome of the dairy calves. We speculate that the potential effects of feeding TRM for 3 wk compared with waste milk were spatially limited to affect the composition of the local gut microbial community and the growth or function of the intestinal epithelium, not allowing detection of the likely effects in the serum through a metabolomic approach.


Subject(s)
Colostrum , Milk , Pregnancy , Animals , Cattle , Female , Milk/metabolism , Colostrum/metabolism , Weaning , Tandem Mass Spectrometry/veterinary , Diet/veterinary , Animal Feed/analysis , Metabolomics , Chromatography, Liquid/veterinary , Body Weight
17.
Sci Rep ; 13(1): 10129, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349521

ABSTRACT

The objective of this study was to investigate the effects of the interaction between corn grain processing and protein source on feed intake, growth performance, rumen fermentation, and blood metabolites of dairy calves. Seventy-two 3-day-old Holstein calves with an initial weight of 39.1 ± 3.24 kg were randomly assigned (n = 12 calves (6 male and 6 female) per treatment) to a 2 × 3 factorial arrangement of treatments with the factors of physical form of the corn grain [coarsely ground (CG) and steam-flaked (SF)] and protein type [canola meal (CAN), canola meal + soybean meal (CASY), and soybean meal (SOY)] were assigned. The study showed a significant correlation between corn grain processing method and protein source on calf performance, including starter feed intake, total dry matter intake (DMI), body weight, average daily gain (ADG), and feed efficiency (FE). The CG-CAN and SF-SOY treatments resulted in the highest feed intake and DMI in the post-weaning and total period, respectively. Interestingly, corn processing did not affect feed intake, ADG, and FE, but the highest ADG was observed at SF-SOY and CG-CAN. In addition, the interaction between corn processing method and protein source improved FE in calves fed CG-CAN and SF-SOY during the preweaning period and throughout the period. Although skeletal growth parameters were unchanged, calves fed SOY and CASY had greater body length and withers height than calves fed CAN during the preweaning period. Rumen fermentation parameters were also not affected by the treatments, except that calves fed CAN had a higher molar proportion of acetate than calves fed SOY and CASY. Corn grain processing and protein source did not affect glucose, blood urea nitrogen (BUN), or ß-hydroxybutyrate (BHB) concentrations, except for the highest blood glucose level observed in the CAN treatment and the highest BUN level observed in the preweaned calves fed SOY. However, a two-way interaction was observed for BHB concentration, suggesting that ground corn grain resulted in higher BHB concentration during the preweaning and postweaning periods than steam-flaked corn. In summary, it is recommended to incorporate canola meal with ground corn or soybean meal with steam-flaked corn in calf starters to enhance calf growth.


Subject(s)
Diet , Zea mays , Animals , Cattle , Female , Male , 3-Hydroxybutyric Acid , Animal Feed/analysis , Body Weight , Diet/veterinary , Fermentation , Rumen/metabolism , Steam , Zea mays/metabolism
18.
J Dairy Sci ; 106(4): 2408-2427, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36894427

ABSTRACT

The composition of milk replacer (MR) for calves greatly differs from that of bovine whole milk, which may affect gastrointestinal development of young calves. In this light, the objective of the current study was to compare gastrointestinal tract structure and function in response to feeding liquid diets having a same macronutrient profile (e.g., fat, lactose, protein) in calves in the first month of life. Eighteen male Holstein calves (46.6 ± 5.12 kg; 1.4 ± 0.50 d of age at arrival; mean ± standard deviation) were housed individually. Upon arrival, calves were blocked based on age and arrival day, and, within a block, calves were randomly assigned to either a whole milk powder (WP; 26% fat, DM basis, n = 9) or a MR high in fat (25% fat, n = 9) fed 3.0 L 3 times daily (9 L total per day) at 135 g/L through teat buckets. On d 21, gut permeability was assessed with indigestible permeability markers [chromium (Cr)-EDTA, lactulose, and d-mannitol]. On d 32 after arrival, calves were slaughtered. The weight of the total forestomach without contents was greater in WP-fed calves. Furthermore, duodenum and ileum weights were similar between treatment groups, but jejunum and total small intestine weights were greater in WP-fed calves. The surface area of the duodenum and ileum did not differ between treatment groups, but the surface area of the proximal jejunum was greater in calves fed WP. Urinary lactulose and Cr-EDTA recoveries were greater in calves fed WP in the first 6 h post marker administration. Tight junction protein gene expression in the proximal jejunum or ileum did not differ between treatments. The free fatty acid and phospholipid fatty acid profiles in the proximal jejunum and ileum differed between treatments and generally reflected the fatty acid profile of each liquid diet. Feeding WP or MR altered gut permeability and fatty acid composition of the gastrointestinal tract and further investigation are needed to understand the biological relevance of the observed differences.


Subject(s)
Milk Substitutes , Milk , Animals , Cattle , Male , Milk/metabolism , Powders , Diet/veterinary , Edetic Acid/metabolism , Lactulose/metabolism , Gastrointestinal Tract/metabolism , Fatty Acids/metabolism , Animal Feed/analysis , Weaning , Milk Substitutes/metabolism , Body Weight
19.
J Dairy Sci ; 106(5): 3662-3679, 2023 May.
Article in English | MEDLINE | ID: mdl-37002139

ABSTRACT

The ratio of n-6 to n-3 fatty acid (FA) is between 2 and 10 times higher in milk replacer (MR) than in whole milk, which may promote inflammation and compromise the integrity of the intestinal epithelium. To evaluate how decreasing the n-6:n-3 FA ratio of MR affects gastrointestinal (GIT) permeability and inflammatory status, 30 dairy calves (2.8 ± 1.06 d of age; mean ± standard deviation) were randomly assigned to be fed an MR with an n-6:n-3 FA ratio of 40:1 (CON; 29.3% crude fat of DM; n = 15) or 6.5:1 (n-3; 29.1% crude fat of DM; n = 15). Calves were fed 7.0 L/d in 2 meals. Calves were weighed and fecal consistency was analyzed weekly. On d 22, calves were administered Cr-EDTA, lactulose, and d-mannitol to assess GIT permeability. Blood and total urine were sequentially collected for 6 and 24 h, respectively, and analyzed for marker content. Whole blood collected 4 h after the meal was subjected to an ex vivo lipopolysaccharide (LPS) challenge to evaluate cytokine secretion from blood cells. Calves were euthanized on d 25 for collection of intestinal tissue samples. Tissue samples were processed to assess FA composition by gas chromatography, histomorphology by bright-field microscopy, and gene expression of tight junction proteins, lipid metabolism enzymes, and immune molecules by real-time quantitative PCR. Data were analyzed using PROC GLIMMIX in SAS (version 9.4, SAS Institute Inc.). Growth performance and fecal consistency were unaffected. Calves fed MR with a lower ratio of n-6 to n-3 FA had 2-fold higher n-3 FA contents and 2-fold lower ratios of n-6 to n-3 FA in proximal jejunum and ileum tissues. Total urinary recovery (0-24 h relative to marker administration) and plasma concentrations of the markers were unaffected. Expression of TJP1 tended to be higher in proximal jejunum tissue and lower in ileum tissue of n-3 calves. The expression of TLR4 and TNFA tended to be higher and CD14 was higher in ileum tissue of n-3 calves. Plasma concentrations of interleukin-4 were decreased in response to the ex vivo LPS challenge in n-3 calves. Histomorphology and GIT permeability were largely unaffected by treatment. Furthermore, the inclusion of linseed and algae oil may promote inflammation, as suggested by greater concentrations of the acute-phase proteins haptoglobin and serum amyloid A postprandially, demonstrating that fat sources should be evaluated for their suitability for MR formulations. Understanding how MR composition affects dairy calf health may improve nutritional strategies on farm.


Subject(s)
Fatty Acids, Omega-3 , Milk Substitutes , Animals , Cattle , Milk , Diet/veterinary , Lipopolysaccharides , Permeability , Animal Feed/analysis , Weaning , Body Weight
20.
Animal ; 17(4): 100762, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36963132

ABSTRACT

Bull-fattening diets in Europe and most developed countries around the world have traditionally been based on corn silage, starch-rich, and high-energy/ high-protein supplemental feeds. The impact of climate change on crop yields feed availability, and price volatility, requires new and adapted feeding strategies, including for fattening bulls. Therefore, the objective of this study was to compare the growth performance and economic impact of a representative, conventional corn silage-based (CONVL) total mixed ration, and a dry (DRY) total mixed ration (TMR) fed to Simmental bulls. For nine months (272 days), 24 bulls (215 ± 10 kg BW) were randomly assigned to one of two TMR feeding groups (n = 12 per group). The DRY-TMR was primarily characterised by the nutrient fibre source, exclusively based on straw and other by-products. The diets were formulated and balanced based on the Cornell Net Carbohydrate and Protein System. After 272 days of fattening, bulls were slaughtered. Feed intake, average daily gain (ADG)/DM intake (DMI) ratio, and nutrient intake were affected by treatment, time, and their interaction (P < 0.05). The treatment affected neither acid detergent lignin intake nor starch intake. Compared with CONVL bulls, animals fed DRY-TMR consumed more non-fibre carbohydrates and rumen undegradable neutral detergent fibre, showing lesser dry and fresh matter intake and less metabolisable energy and physically effective neutral detergent fibre intake. Despite differences in nutrient intake (P < 0.05), particle size distribution between the two diets and growth performance were not different (P = 0.45). Simmental bulls in both treatment groups reached target weight in a shorter time due to high ADG of 1.87 kg (DRY-TMR) and 1.84 kg (CONVL). Both treatments achieved a positive profit margin (598 ± 28 €/bull). While total income per bull and dressing percentage did not differ between treatments, the substantially higher feed costs (P < 0.01) of the DRY-TMR resulted in a higher (P = 0.04) income over feed cost in favour of the CONVL treatment group. Despite the higher feed cost of DRY compared with CONVL diets, the better ADG/DMI ratio (P < 0.01) of DRY-TMR contributed to lower absolute feed quantity requirements during the fattening period. Due to the positive profit margin and high ADG results, DRY-TMR solutions for fattening bulls based on straw and by-products can be considered a promising alternative feeding strategy.


Subject(s)
Silage , Zea mays , Cattle , Animals , Male , Female , Silage/analysis , Zea mays/metabolism , Animal Feed/analysis , Detergents/metabolism , Diet/veterinary , Rumen/metabolism , Starch/metabolism , Lactation
SELECTION OF CITATIONS
SEARCH DETAIL
...